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Lagrangian Formulation of a Linear Microstrip
Resonator: Theory and Experiment

H. How, A. Widom, and C. Vittoria, Fellow, IEEE

Abstract —The electromagnetic scattering properties of a linear mi-

crostrip resonator are formulated ntilizing a Lagrangian approach. The
resonator design includes a center microstrip separated from the source
and output loads by dielectric gaps. The gaps of the resonator are
represented by capacitively conpled m-networks, whose capacitance vsd-
ues are fitted by experimental data. Calculated and measured reflection
coefficients of linear microstrip resonators are compared and general

agreements are found between theory and experiments.

I. INTRODUCTION

T RADITIONALLY, the electromagnetic scattering data
of a linear microstrip resonator is analyzed in terms of

lumped RCL circuits. Each resonant mode is associated with
a specific combination of RCL values. The coupling to the
microwave source is represented by a coupling coefficient K.

K is determined from analysis of measured line shapes of the
resonant modes and intrinsic quality factor of the modes,
Qin. Specifically, Qi~ is related to the measured quality factor
Q~ by the following

Qin=(l+K)Q~. (1)

The above analysis was introduced by Ginston in 1957 [1]. It
is clear in this analysis that the lumped circuit parameters
associated with each resonant mode are not related to each
other. Knowledge of the lumped RCL parameters of one
mode is insufficient in predicting the parameters of other
modes. Furthermore, the measured electromagnetic parame-
ters, Qin and K, cannot be directly related to the circuit
design parameters of a microstrip resonator, say, the dielec-
tric loss, the conductor loss, and the gap separation.

In this analysis, we are proposing a new analysis in which
one and only one set of parameters (Cl and C2) are intro-
duced in the model to represent the electromagnetic scatter-
ing properties of the resonator at all frequencies or resonant
modes. This is done by utilizing a Lagrangian approach,
where the transmission line and the two gaps are formulated
together as one system and in terms of the physical parame-
ters of the microstrip line resonator. It is generally recog-
nized that the Lagrangian approach provides the most conve-
nient way of formulating the couplings between dynamical
systems. Examples of coupled lumped electrical circuits, de-
scribed in terms of Lagrangians, can be found in [2], In this
paper, we first formulate the Lagrangian of a microstrip
transmission line in which a wave of the fundamental TEM
mode of propagation is derived. While a gap in a microstrip
line is modeled in terms of a capacitive r network, the
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Lagrangian is formulated in the di’screte limit such that the
equations of motion transform into two boundary conditions,
relating the waves on the two sides of the gap in terms of two
lumped capacitors. The effective capacitors expressed in the
boundary conditions are actually the capacitances experi-
enced by the even and odd excitation modes of the system,
respectively. The calculations therefore take into account the
characteristic impedance, effective dielectric constant, con-
ductivity of the metal strip and the ground plane, and dielec-

tric loss tangent of the dielectric material. In addition, the
two capacitor values representing the gaps are included in a
consistent manner with the above parameters by the applica-
tion of the Lagrangian formulation. Reflection coefficients
are calculated from our model and their predictions agree
very well with the measurements.

II. THEORETICAL FORMULATIONS

Fig. l(a) shows the construction of a microstrip line where
w, t, h, and e, are, respectively, the width, the thickness of
the metal strip, the thickness, and the relative dielectric
constant of the dielectric substrate. In the discrete limit, a
(Iossless) microstrip line is represented by distributed ele-
ments as shown in Fig. l(b), where c, p, b, and QI are,
respectively, capacitance per unit length, inductance per unit
length of the transmission line, the length increment of the
line, and the current flowing through the ith inductor of the
line. The Lagrangian of the transmission line (of infinite
length) is, therefore,

L= fj
[

:Q?- 1&(Qi+,-Q1)2.,=—03
In the continuum limit, L becomes

‘=f.+(a’-xa’] ‘2)
The Lagrangian equation of motion is

where 8L / 8Q denotes functional derivative of L with re-
spect to Q, etc. When (2) is substituted into (3), one obtains

i32Q 1 32Q
—— ——
ax’ 112 atz

=() (4)

which is the wave equation of the TEM mode of propaga-
tion. The electromagnetic waves travel with a velocity u
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Fig. 1. (a) Microstrip line configuration. (b) Microstrip line repre-
sented by distributed capacitors and inductors.

given by

where

E = ‘reEO

P = PrePO

and ~. and I-Lo are permittivity and permeability of free
space, respectively. The relative permittivity and permeabil-
ity of the line, ~,e and P,., become complex numbers if the

line is 10SSY,and, for a narrow line h > 0.8w, e,, and w,. take
the forms [3]

pre = p’– ip”. (5b)

Here

e’= 0.475c, +0.67 (6a)

e“= e’F, tani3 (6b)

~’=1 (6c)

p“=2aczo/a3. (6d)

aI is the angular frequeney, Er is the relative dielectric
constant of the dielectric substrate, tan 6 is the loss tangent
of the substrate, aC is the conductor attenuation constant, Fe
is the filling factor of the substrate material given by

FE=0.5[l+(l +10h/w)-1’2] (6e)

and Z. is the characteristic impedance of the line. aCZ{) can
be derived from the following equation [3]:

aCZoh 8.68

[ ( )1[ h 4’rrw 1
—. — 1– ;

R, 2T ( )11+$+— Iny+; .
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Fig. 2. (a) Capacitive w-network model of a microstrip gap. (b) Mi-
crostrip lines and gap represented in the discrete limit bv capacitors and.
inductors.

In (7),
w’=w+Aw

()Aw=~ ln~+l
%’

and the surface impedance R. is defined by

F’
R,= ~

with u being the conductivity of the metal strip and the
ground plane.

When a gap is introduced in a microstrip line, as shown in
Fig. 2(a), two lumped capacitors forming a m-network can be
used to model the gap [4]. Capacitor Cl describes the cou-
pling of the excess charges accumulated at the two ends of
the lines and capacitors C2 correspond to the coupling
between the strip excess charges and the image charges
induced in the ground plane. As shown in Fig. 2(b), the
Lagrangian of the system, two semi-infinite microstrip lines
and a gap, can be described in the discrete limit as

-& ~,[(Q.+, -QJ2+(Q..-Q -J.]’]
n–

Q;-—-+[(Q,-f20)2+U2-1-QO)2](f9
2QI

Substituted into the Lagrangian equation

%-:[8(,;/,.)]-:[,(,;:,,,)]=0 ‘(9,

one obtains d2Q,,
—–~(2Q,, –Qn+,–Qn_,)=0,–pb dt2

for Inl >1 (lOa)

d2Q+l jQA1-Q+2+Qb20–pb7– —

for n= +1 (lOb)

c1Q(I=Zc, ~ ~2 (QI+Q-1), for n =0. (1OC)
(7)
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In the continuum limit, (lOa) and (lOb) become TABLE I
INFORMATIONABOUTRESONATORS#1 TO,#5

d2Q 1 J2Q
= o, forx#O (11)

Microstrip Linear Resonators—— .—
dtz E/.,l at 2 #1 #2 #3 #4 #5

aQ Gap (cm) 0.105 0.085 0.065 0.045 0.025
=AQlx=o. –BQ]. =o- (12a)

ax
Linear

x-o+ Dimension (cm) 0.79 0.83 0.87 0.91 0.95
Resonance

aQ
No (very Yes Yes Yes

Observed? small)
=BQ/x=o+– AQ/x=o-

~x ~=o-
(12b)

where constants A and B are defined as x = a require

( 1
A=; ++

)

~\xl=Aa-B(l+p) (15a)

2C1 + C2
(13a)

2

(

i(l–p)/xo =Ba– A(l+p) (15b)

1
B=z ~–

2 C2 2c~+c2,)
(13b)

i~e/xo = A7e – B(CXC+ 9s) (15C)

and (1OC) has been used in deriving (12a) and (Izb). Equa-
tion (11) is the same wave equation as derived in (4), and

(12a) and (12b) turn out to be boundary conditions associ-
ated with the gap located at x = O. Note that xl and B are
defined in terms of two capacitances, 2 C2 and 2CI + C2,
which are actually the effective capacitances associated with
the even and odd mode excitations of the system containing
the gap and the two microstrip lines, respectively.

Consider a microstrip linear resonator bounded by two
identical gaps located at x = O and x = a and fed by two
semi-infinite microstrip lines called launcher (detector) lines.
The launcher lines are considered to be lossless in order to
make the boundary conditions at x = f cu simple. The wave

propagating in the launcher lines satisfies (11), except ~ and

(-as+pc) = B7e - A(ac+Ps) (15d)

where e, c, and s are defined as

e=exp(ia/xo)

c=cos(a\xl)

s=sin (a/xl).

Therefore, the four unknowns p, a, f?, and r can be solved
through (15a) -(15d). The reflection coefficient p is found to
be

w–1
p.— (16)

W+l

where

i

(

A B2
w.

A2_B2 –;+ a2(A2– B2){~t+(t2 +l)\[d– t\q–a2B2\(d+i) }+A~}

t=tan(a/xl)

‘q=xl\xo.

M are replaced by C’eo and Ko, respectively. Assume the
wave has the following dependence:

Q=u(x)exp(-iwt)

and u(x) takes the following form:

u(x) =exp(h/xo) +pexp(–ix/x[j) forx<O

=acos(x/xl) +~sin(x/xl) for O<x<a

=7exp(ix/xo), forx>a, (14)

where X. and x, are defined as

1

/

1
Xo=— —

m ~’~o~o

r

11
~1=— —,

@ Ep

From (12a) and (12b), the boundary conditions at x =() and

The last item that needs to be clarified is the resonator
length. Due to the fringe fields around the open ends of the
resonator, the effective length of the resonator, a, is larger
than its physical length, a[~. From [4], we have

a = at] +28a

where

(17)

and N is a constant of magnitude unity. As shown in the
following section, in order to best describe the experimental
data N is found to have vd.re 0.307.

111. EXPERIMENTAL RESULTS

Microstrip resonators were fabricated by us utilizing
RT/duroid 6010 laminates which have the following nominal
values: h = (),635 mm, t = 15 pm, E, = 10.2-10.5, tan 8 =
0.0023, and m = 5.8X 107 mho/m. The dielectric constant of
the substrate material was found to be frequency dependent
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Fig. 3. Experimental reflection data for resonator #3.
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Fig. 4. Experimental reflection data for resonator #4.

of the following form:

e,= 10.2+ 0.0147”~ (18)

and ~ is in GHz. The constant ~r was determined from
fitting calculated and measured values of reflection coeffi-
cients from 0.1 to 18 GHz. Furthermore, all the microstrip
lines were designed of width w = 0.65 mm in order to have
the characteristic impedance of the lines, Z{), equal to 50 [1.

As outlined in Table I, five resonators were Pdbricated
with gaps ranging from 0,105 to 0,025 cm and linear dimen-
sion, ao, ranging from 0.79 to 0.95 cm. The total length of all
the circuits, including the resonator, the two gaps, and the
two launcher (detector) lines, was 3 cm. The circuits were
tested utilizing a network analyzer, HP8510B. Resonators #1
and #2 showed very little resonant structure, since the
coupling is small between launcher and resonator for large

I
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Fig. 5. Experimental reflection data for resonator #5.

gaps. Therefore, only resonators #3, #4, and #5 will be
discussed in this paper.

Figs. 3-5 exhibit measured Sll data on resonators #3 to
#5, respectively. The frequency ranged from 0.1 to 18 GHz,
and 801 data points were taken during the frequency sweep.
For each resonator, three resonant peaks were observed as
Sll was measured from 0.1 to 18 GHz. The Sll data were
composed of background and resonant signals. The back-
ground signal arises from the very low Q electromagnetic
standing mode resonances of the electromagnetic waves
within the launcher lines. We were able to separate the
background from resonant signal by fabricating microstrip
lines without the central resonator, a circuit containing only
the open structure of the launcher lines and detector lines.

Data on the nine resonant peaks of the three resonators
are tabulated in Table II. The data include resonant fre-
quencies, intensities, and quality factors of each measured
resonant mode (numbered from 1 to 3 for resonators #3 to
#5). The effective increment of the resonator length, 8a, can
also be calculated from the measured deflection data via the
following equation:

(19)
L .Tres~E’

where c is the velocity of light in vacuum, and ~,,, and n are
the resonant frequency and the order of the resonant peak,
respectively. 8a values calculated by (19) are also included in
Table II,

Theoretical predictions of the reflection data of the res-
onators #3-#5 can be calculated via formulas outlined in
the previous section, provided that the two lumped capacitor
values Cl and Cz are known. In this analysis, Cl and C2 are

obtained via data fitting: we require the frequency and the
intensity of the fundamental mode of the resonators to be
the same for both the theory and the measurements. This
determines uniquely Cl and Cz and their values are tabu-
lated in Table 11, Using these Cl and, C2 values, the associ-
ated reflection characteristics of resonators #3-#5 can be
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TABLE II
COMPARISON BETWEEN THEORY AND EXPERIMENT FOR RESONATORS #3 TO #5

Resonator #3 #4 #5

Peak No. 1 2 3 1 2 3 1 2 3 Method

Resonant 6.03 11.87 17.44 5.83 11.42 16.83 5.51 10.84 15.96 Meas.

Freq. (GHz) 6.03 11.87 17.49 5.83 11.42 16.81 5.51 10.84 16.03 Calc.

Peak Height – 0.50 – 0.70 – 0.86 – 2.15 -4.37 – 20.7 –4.45 – 23.8 –3.82 Meas.

(dB) – 0.50 – 1.07 – 1.36 – 2.15 -4.07 – 5.24 – 4.45 – 7.75 – 9.21 Calc.

Q Value 108 152 195 87 102 125 62 65 75 Mess.

108 177 156 130 113 60 41 33 28 Calc.

8a (mm) 0.91 0.96 1.02 0.89 0.96 1.03 1,01 1.06 1.11 Meas.

0.97 0.96 0.96 0.94 0.93 0.93 1.09 1.08 1.08 Calc.

Cl (pF) 0.007 0.013 0.024 Cited

0.048 0.107 0.180 Calc.

C2(pF) 0.031 0.025 0.017 Cited

0.451 0.376 0.372 Calc.

1
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Fig. 6. Theoretical reflection data for resonator #3.

calculated and the result for that of resonator #3 is shown in
Fig. 6. Information about the resonant modes of the res-
onators predicted by the theory are summarized in Table 11,
including the resonant frequencies, the intensity, and the
quality factors. 8a values calculated via (17) are also tabu-
lated in Table II, where the constant N is chosen to be 0.307
in order to best fit the experimental data.

Field calculations (solution of singular integral equations)
concerning excess charge distributions near gaps in mi-
crostrip transmission lines can provide estimates [5] about
the magnitudes of Cl and C2. For resonators #3-#5, the
associated Cl and C2 values calculated in this way and cited
from [5] are listed in Table II. We note that the Cl values
found by us are several times larger and Cz values one order
of magnitude larger than the values derived by pure-field
considerations [5]. However, the trends of variations of Cl
and Cz with gap separations are the same as those found in
[5]: Cz scales as the width of the gap whereas Cl as the
inverse.

Careful examination of Table II reveals that our theory
predicts very well the resonant frequencies and 8a values of
the resonators. In addition, good agreement was found be-
tween theory and experiments for the peak height signal and
Q values of the resonators. However, we should point out
two cases in which the agreement between calculated and
measured resonant intensities was poor: the third peak of
resonator #4 and the second peak of resonator #5. We
attribute this discrepancy to the incomplete treatment of our
theoretical model. In the theory, we have treated the launcher

(detector) lines to be semi-infinitely long. In reality, the
launcher lines are only of finite lengths and hence provide an
oscillatory background structure for the SI ~ measurements.
Extraordinary interaction between the central microstrip res-
onator and the launcher lines occurs, if the resonant fre-
quencies of launcher lines and resonator coincide, i.e., the
resonant peaks are situated at the crests of the background
oscillations. This statement can be qualitatively proved by
applying the Fermi–Golden rule [6] to microwave circuits.
When a photon is excited in the central resonator, the
lifetime of the photon, i.e., the Q of the resonator, depends
inversely on the transition rate of the photon from its initial
state of the resonator to a final state on the launcher line.
The photon transition rate is proportional to the state den-
sity of the final states. The density of states of the photon
modes on the launcher lines has much lower values for
frequencies located at the background oscillation crests than
when they are located elsewhere. Therefore, the photon
modes are much more isolated when the frequencies are
located at the crests and so the resonant peaks intensify
tremendously in these situations. A complete treatment of
this problem includes modeling of the two launcher lines of
finite length, superimposed by the boundary conditions at
the other ends of the launcher lines where the effects of
coaxial-line to microstrip-line adaptors have to be consid-
ered.

IV. CONCLUSIONS

We have formulated the Lagrangian of a linear microstrip
resonator from which resonant behaviors of all modes can be
described in a single model. With this approach, there is no
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need to introduce any artificial parameter in describing the
data, such as the coupling coefficient of the lumped RCL
circuit in Ginston’s model [1]. The theory, in general, pre-
dicts the following: as the order of the resonant mode
increases, the peak intensity increases and the Q decreases;
when the gap separation increases, Cl decreases, Cz in-
creases, and 8a decreases. These general conclusions com-
pare reasonably well with our experimental findings. Our
theoretical model can be further refined if the launcher line
is assumed to be finite rather than semi-infinite. Neverthe-
less, the Lagrangian formulation lends readily itself to trans-
mission line perturbations discussed here.
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